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Abstract. We present results of theoretical studies of the non-resonant excitation transfer in Rb(7S) +
Rb(5S) and Rb(5D) + Rb(5S) collisions at thermal collision energies. Rb2 adiabatic molecular terms
correlating with the 5S+7S, 5S+5D and 5P+5P states of separated atoms were calculated for internuclear
distances R > 20 a.u. using asymptotic approximation. Mechanisms of collisional population and quenching
of the 5D state were treated on the basis of the computed molecular terms, and the respective cross-sections
were calculated. Theoretical cross-sections are in good agreement with the experimental values at thermal
collision energies (T ∼ 500 K).

PACS. 34.50.Fa Electronic excitation and ionization of atoms (including beam-foil excitation
and ionization) – 34.20.-b Interatomic and intermolecular potentials and forces,
potential energy surfaces for collisions

1 Introduction

Excitation energy transfer (ET) in atomic collisions is
a subject of intense studies over several decades. Un-
til the middle of 70-ties, mainly ET between the reso-
nance states in alkalis was studied (see review [1] and
references therein). To interpret these processes theoreti-
cally, the theory of non-adiabatic processes had been de-
veloped ([2] and references therein). In 70-ties, ET was
observed in a collisions of two excited alkali atoms in res-
onance states leading to formation of one highly excited
atom and one atom in ground state (the so-called energy
pooling (EP)) [3,4]:

A∗(n1Pj1) + B∗(n2Pj2)→ A∗∗(n3lj3) + B(n0S1/2) +∆E.

Already the first theoretical studies of EP showed that
its high efficiency is related with the strong dipole-dipole
interaction between the initial and final states [5–7]. The
EP has been studied since then in both homonuclear [8–
13] and heteronuclear [14–16] collisions, and elaborated
experiments have been performed with polarised collision
partners [17]. The theoretical calculations of ET show that
the results depend on factors like the chosen basis set of
molecular wave functions, included interactions, quality of
the molecular terms used in calculations, and the approach
used for calculations of the dynamics of collision process.
One can notice that calculations tend to give cross-sections
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systematically lower than the experimental values (see [6]
and compare [9,10] with [7,18,19]). The difficulties per-
sist also in interpretation [18,20] of the polarisation de-
pendent experimental data [20] for the EP of two Na(3P)
atoms. Note, that for several experimental studies either
no theoretical counterparts exist [11,12,14,15], or they are
incomplete [13,16].

Recently a rather large cross-section σ(500 K)= (8 ±
4)×10−15 cm2 had been measured for the ET process [21]

Rb(7S)+Rb(5S)→ Rb(5D)+Rb(5S)+∆E = 607 cm−1,
(1)

where initial and final atomic states seemingly do not pos-
sess the dipole coupling. The 5D state collisional quench-
ing cross-section σ5D,exp

q = (2 ± 1) × 10−14 cm2 was also
reported in the same work. Despite the “dipole-forbidden”
appearance of the process (1), this kind of reactions were
observed to proceed efficiently also in other alkalis [22].
In our earlier theoretical study [23] we have shown that
the observed efficient ET between the 7S and 5D states
of Rb is thanks to the near lying 5P+5P configuration,
which introduces a strong dipole coupling between the ini-
tial 7S+5S and final 5D+5S configurations. In the present
work we give a more detailed description of the method,
and generalise the calculations for both exo- and endoen-
ergetic processes.

In general, inelastic collisions of type A + B∗ → A∗ +
B±∆E at thermal collision energies can be considered as
transitions between quasi-molecular terms corresponding
to initial and final states of a system of colliding atoms.
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Fig. 1. The lowest energy levels of Rb atom. Broken lines
represent energies of the 5Pj + 5Pj′ states.

Such processes take place at localised regions around in-
ternuclear distances where molecular terms exhibit cross-
ings or avoided crossings. If the electronic states of A+B∗
and A∗ + B are connected with optical dipole transitions,
inelastic processes may proceed efficiently at large inter-
nuclear distances thanks to dipole-dipole interaction. The-
oretical treatment of ET requires information on the in-
teratomic interactions at medium and large internuclear
distances (R ≥ 20 a.u.). Essential is the qualitative picture
of terms, which allows one to determine locations and pa-
rameters of term crossings and avoided crossings. For the
excited Rb2 states of interest, the potential curves have
never been calculated quantum mechanically for a broad
range of internuclear distances. To calculate the adiabatic
molecular terms, we use a comparatively simple asymp-
totic method [24]. Since the positioning of electronic terms
correlating with 5P+5P, 5D+5S and 7S+5S is such that
they are well separated from the other higher and lower
lying states (see Fig. 1), the processes of ET between the
7S and 5D states and their quenching can be treated as
non-adiabatic transitions within this particular group of
terms.

In this study we have improved the terms given in [23].
This specification has influenced the layout of terms shift-
ing and the absolute positioning of crossings and avoided
crossings. The transition probabilities between the atomic
sates remained practically unchanged, but the effective
cross-section for the reaction (1) somewhat increased,
which is an effect of shift of the non-adiabatic regions
towards larger internuclear distances. The fact that the
dependence of the cross-section on the absolute values of
term energies and parameters of most of the avoided cross-
ings is weak supports the conclusion drawn in [23] that the
considered processes are close to statistical. Relying on the
calculated terms, we were able to determine the partial
populations of the molecular states and the corresponding
populations of atomic states at infinite internuclear sepa-
ration at a unity initial population of a selected molecular
state. This allowed us to calculate transition probabilities
for a large number of collisional processes.

2 Interatomic interactions and molecular
terms at large internuclear distances

Relatively large experimental cross-sections for the pro-
cess (1) and 5D quenching suggest that the main contri-
bution to these processes is due to non-adiabatic tran-
sitions at large internuclear distances, R > 20 a.u., for
which a system of adiabatic electronic terms should be
built correlating with the initial and final states of sepa-
rated atoms, 7S+5S, 5D+5S, and 5P+5P (hereafter – SS,
DS, and PP, respectively). Adiabatic electronic terms for
these highly excited Rb2 states are not known, and exact
calculation of them is an extremely complicated computa-
tional task. To avoid this problem, we have used a simple
and well-approved asymptotic method [24]. Comparison
of quantum mechanical and asymptotic calculations has
shown [25] that the asymptotic method gives a correct
relative disposition and slope of molecular terms at in-
ternuclear distances R ≥ 2(1/αB − 1/αA), and provides
in most cases also satisfactory estimates of their absolute
energies. Here αA,B =

√
2IA,B(SL), where IA,B(SL) is the

first ionisation potential of a ground state (A) or excited
(B) atom in SL state.

2.1 Hamiltonian

In a rotating system of molecular coordinates, the Hamil-
tonian of a colliding pare can be written as

Ĥ = ĤA + ĤB + V̂ + V̂R + ωĵ⊥ + V̂SO, (2)

where ĤA and ĤB are the Hamiltonians of isolated atoms;
V̂ is the interaction operator between atoms A and B; V̂R

and ωĵ⊥ are the operators of radial coupling and Coriolis
interaction respectively, V̂SO denotes the operator of spin-
orbit interaction, which is practically independent of the
internuclear distance for R � 15 and equals the sum of
the corresponding operators in atoms.

At large internuclear distances interaction of atoms
weakens and becomes comparable with the spin-orbit
splitting (237.6 cm−1) of the rubidium 5P1/2,3/2 doublet.
Therefore it is convenient to use adiabatic Ω basis, in
which the spin-axis interaction is accounted for in molec-
ular wave functions. In this case, besides the projection of
total electronic angular moments onto internuclear axis,
Ω, the adiabatic terms are characterised also by parity
(w = +1,−1 for g, u) of the wave function regarding in-
version Ŵ in the centre of the molecule and, for terms
with Ω = 0, also by symmetry (σ = +,−) of the reflec-
tion σ̂V through a plane containing internuclear axis. The
action of the symmetry operators on the basis functions
is given in [5].

As the basis of zero order approximation we chose
eigenfunctions of the Hamiltonian of separated atoms

Ĥ0 = ĤA + ĤB + V̂SOA + V̂SOB, (3)

where V̂SOA, V̂SOB are the spin-orbit interaction opera-
tors in atoms A and B. At large internuclear distances



K. Orlovsky et al.: Theoretical study of energy transfer in Rb(7S) + Rb(5S) and Rb(5D) + Rb(5S) collisions 135

the molecular wave functions |Ωσw〉 can be constructed
by means of the projection operator technique as linear
combinations of antisymmetrised multiplications of wave
functions of isolated atoms

〈
jA
1 m1

∣∣〈jB
2 m2

∣∣. One accounts
here only for the atomic states correlating with a given
molecular state. In order to build molecular terms in this
approximation, it is necessary to diagonalise the matrix
with matrix elements of the form [5]

Hif = i

〈
jA
1 m1

∣∣
i

〈
jB
2 m2

∣∣Ĥ(1− Â+ wŴ + σσ̂V

− wÂŴ + σwŴ σ̂V − σÂσ̂V − σwÂŴ σ̂V )

×
∣∣j′A1 m′1

〉
f

∣∣j′B1 m′2
〉
f
, (4)

where Ĥ is the Hamiltonian (2) of the molecule without
the operators of non-adiabatic couplings V̂R and ωĵ⊥ and
the operator of spin-orbit interaction, Â is the antisym-
metrisator, jA

1 , jB
2 are the total moments of isolated atoms

A and B, and m1,m2 are their projections onto internu-
clear axis; |m1 +m2|i = |m′1 +m′2|f = Ω.

Since the overlap of atomic wave functions at large in-
ternuclear distances is small, the parts containing squares
of overlap integrals can be disregarded. Moreover, if one
assumes that distortion of the wave functions, which has to
be taken into consideration in correct asymptotic calcula-
tions of exchange interaction, is small and has no influence
on the magnitude of Coulomb interaction, the operator of
interatomic interaction V̂ becomes [26]

V̂ = V̂Coul + V̂disp + V̂exch, (5)

with V̂Coul being the operator of Coulomb interaction,
which can be factorised to multipoles, V̂disp – the effec-
tive operator of dispersion interaction, and V̂exch – the
operator of exchange interaction of electrons 1A and 2B

between each other and with another nucleus. We used
the atomic wave functions, the radial parts of which at
large internuclear distances were expressed as

ϕnl(R) = NnlR
1/αnl−1e−αnlR, (6)

where α2
nl/2 is the binding energy of nl valence electron.

The normalising coefficient Nnl can be calculated either
in Coulomb’s approximation, which provides satisfactory
accuracy for excited states of alkalis, or by matching
expression (6) with Hartree-Fock calculations of the wave
function at the atomic size limit. Using the function (6),
the matrix elements (4) are readily calculable by methods
of the theory of atomic spectra [27]. The values of the

Table 1. Asymptotic parameters of valence electron in atom
or in negative ion.
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asymptotic parameters used in the calculations are given
in Table 1.

2.2 Diagonal interactions

Let us consider the main interactions in the Rb2 system
at large internuclear distances. At distances larger than
45 a.u. the atoms in all configurations can be regarded as
free. At 20 ≤ R ≤ 45 a.u. the exchange interaction domi-
nates within the SS and DS configurations. In the basis of
|Ωσw〉 the matrix elements of V̂exch are diagonal and con-
tain all possible two-electron exchange integrals. These in-
tegrals can be expressed through asymptotic splitting of
singlet and triplet states, which occur at the interaction
of two hypothetical single-electron atoms with the elec-
tronic wave functions corresponding to atomic orbitals of
type (6). The exchange integrals were calculated by means
of asymptotic formulae given in [28]. Among the large
number of exchange integrals in the SS and DS configura-
tions, the main contribution to the matrix elements (4) is
due to the exchange integrals without excitation transfer
with zero projection of electronic orbital moments onto in-
ternuclear axis, the YΣ integrals. The other integrals did
not exceed a few per cent of YΣ , and were therefore treated
as small corrections.

Within the PP configuration there exists a direct elec-
trostatic interaction proportional to 1/R5, which corre-
sponds to interaction of atomic quadrupole moments.
However, the quadrupole interaction does not exceed
30 cm−1 and can be therefore disregarded for the con-
sidered range of internuclear distances.

The dispersion interaction has a form −C/R6 for all
configurations. To estimate the dispersion interaction we
used the formulae given in [25,28]:

see equations (7, 8) below.

〈〈
jA
1 m1S10

∣∣〈jB
2 m2(nl)N2S2L2

∥∥V̂disp

∥∥jA
1 m1S10

〉∣∣j′B2 m2(nl)N2S2L
′
2

〉〉
=
αA

〈
r2
B

〉
nl

R6

√
6
5

√
2j2 + 1(−1)L2+S2+j2

×
[
j′2 2 j2
m2 0 m2

]{
L2 j2 S2

j′2 L′2 2

}〈
(nl)N2S2L2

∥∥U2
∥∥(nl)N2S2L

′
2

〉
, (7)

〈
r2
B

〉
nl

=
∫ ∞

0

r2ϕ2
nl(r)r

2dr. (8)
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Here n, l are the quantum numbers of N2 equiva-

lent valence electrons,
[
j′2 2 j2
m2 0 m2

]
-Clebsch-Gordan co-

efficients,
{
L2 j2 S2

j′2 L′2 2

}
-6j-symbols, αA-atomic polaris-

ability of atom A. The reduced matrix elements〈
(nl)N2S2L2

∥∥U2
∥∥(nl)N2S2L

′
2

〉
depend on l and N2 only,

and are given in [29] for l = 1, 2 and all possible values
of N2. The

〈
r2
B

〉
nl

values were calculated in [30,31] from
the Hartree-Fock orbitals for a large number of atoms and
different n and l.

The estimates of the dispersion interaction using the
known atomic constants of rubidium showed that it is
the largest within the DS configuration, though it does
not exceed 44 cm−1 for R ≈ 30 a.u. For the SS and PP
configurations it is even smaller and can be disregarded.
It is important, however, that at distances larger than
36 a.u. the calculated molecular terms can be well ap-
proximated by the −C/R6 dependence. For instance, at
R ≈ 38 a.u. the deviations of the 0σw terms correlating with
the 5D3/2,5/2 + 5S1/2 states from the −C/R6 dependence
do not exceed 4 cm−1 in the worst case.

2.3 Non-diagonal interactions

Among the non-diagonal interactions the strongest is the
dipole-dipole interaction that couples the initial SS and fi-
nal DS configurations to the PP configuration. Note that
the initial and final configurations are not directly cou-
pled with each other since S↔S transitions are forbidden
in any approximation. The coupling between the initial
and final states of the system is put into effect thanks to
their dipole interaction with the intermediate PP config-
uration. Matrix elements of the operator of dipole-dipole
interaction,

V̂ABdip = − 2
R3

1∑
q=−1

1
(1− q)!(1 + q)!

Q
(1)
qAQ

(1)
−qB, (9)

are easily calculable in the |Ωσw〉 basis by the methods of
the theory of atomic spectra applying the Wigner-Eckart
theorem [26]:

see equation (10) below

where [3×3] matrix is a 9j symbol, but the reduced matrix
elements 〈γj‖Q(1)‖γ′j′〉 of the irreducible tensor opera-
tors Q

(1)
q are related to the experimentally measurable

oscillator strengths of dipole transitions f(γj, γ′j′) by the
relation

f(γj, γ′j′) =
2
3
εγ′j′ − εγj

2j + 1
|〈γj‖Q(1)‖γ′j′〉|2. (11)

In equations (10, 11) γ stays for all the quantum numbers
characterising an atomic state, except the atomic spin S,
the orbital moment L, and the total moment j, and εγj
denotes the energy of a fine structure level.

Absolute values of the reduced matrix elements
〈γj‖Q(1)‖γ′j′〉 can be obtained from equation (11) by in-
serting the known values of oscillator strengths for ru-
bidium. Note that equation (11) does not allow one to
determine the sign of a matrix element. The sign can be
determined from the comparison of the oscillator strengths
calculated by the quantum defect method [32] with those
measured experimentally. We assume that the method en-
sures the correct sign for a matrix element if the calculated
oscillator strength agrees with the experimental value.

The rest of the non-diagonal matrix elements are neg-
ligible at large internuclear distances, since they decrease
with the internuclear distance more rapidly than R−3.

2.4 Molecular terms

Using the matrix elements calculated in the above de-
scribed way, we obtain the molecular Ωσw terms by di-
agonalising a number of Ĥ(Ωσw) matrixes,

Ĥ(Ωσw) = ÊSS + α̂YΣ(SS) 0 V̂dip(SS− PP)
0 ÊSD + β̂YΣ(DS) V̂dip(DS − PP)

V̂dip(SS− PP) V̂dip(DS− PP) ÊPP

 ,

(12)

where ÊSS, ÊSD, ÊPP are diagonal matrixes, eigenvalues
of which correspond to sums of energies of isolated atoms
in the 7S1/2+5S1/2, 5D5/2,3/2+5S1/2, 5P3/2,1/2+5P3/2,1/2

states, matrixes α̂ and β̂ are built up from Clebsch-Gordan
coefficients, but V̂dip(SS− PP) and V̂dip(DS − PP) are
matrixes of dipole-dipole interaction between the SS and
PP, and DS and PP configurations, respectively. The pos-
sible molecular terms that can arise from the 7S1/2+5S1/2,
5D5/2,3/2 + 5S1/2, and 5P3/2,1/2 + 5P3/2,1/2 states are
listed in Table 2. The numerical diagonalisation proce-
dure of Ĥ(Ωσw) matrixes for different internuclear dis-
tances yielded a set of Rb2 adiabatic terms given in
Figure 2.

〈
γ1j1γ2j2jΩ

∣∣VABdip

∣∣γ′1j′1γ′2j′2j′Ω′〉 = δΩΩ′

(
− 2
R3

)〈
γ1j1

∥∥Q(1)
A

∥∥γ′1j′1〉〈γ2j2
∥∥Q(1)

B

∥∥γ′2j′2〉
×
∑
χq

[(1− q)!(1 + q)!]−1

[
1 1 χ
q −q 0

][
j′ χ j
Ω′ 0 Ω

]
[(2j′ + 1)(2χ+ 1)]1/2

χ j j′

1 j1 j′1
1 j′2 j

′
2

 , (10)
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Table 2. The number of molecular states with projections
Ω = 0, 1, 2 and 3 arising from the S1/2+ S1/2, D5/2+ S1/2,
D3/2+ S1/2, P3/2+ P3/2, P3/2+ P1/2 and P1/2+P1/2 states of
separated atoms.
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2.5 Influence of the ionic Rb++Rb− configuration

A quasi-molecule composed of two Rb atoms has also the
ionic Rb++Rb−(1S) configuration. The energyEion of this
configuration changes with the internuclear distance as

Eion = −β
2

2
− 1
R
− α(Rb+) + α(Rb−)

R4
+ IRb,

with β2/2 being the energy of electron affinity for Rb,
α(Rb+), α(Rb−) – dipole polarisabilities of Rb+ and Rb−,
IRb – the first ionisation potential of Rb atom. The ionic
configuration perturbs the SS and DS configurations at
R ≈ 63.6 a.u. and R ≈ 54.0 a.u., respectively. There-
fore care was taken to estimate the ionic-covalent interac-
tion in order to determine the possible contribution of ET
through the ionic state.

The ionic-covalent interaction has been considered in
a number of studies using the single-electron approxima-
tion to describe the motion of an active electron in the
system (A+ +e+B). The non-diagonal interaction matrix
elements of the ionic configuration with the SS and DS
configurations are of the form [33]

〈nl|Ĥ|i〉 =
[

1
2

(2l + 1)β
]1/2

NiNnlR
1
αnl
−1e−αnlR.

We used here asymptotic representations for both the
atomic wave function (see Eq. (6)) and the wave function
of the electron in the negative ion,

ϕi(R) = NiR
−1e−βR.

The normalising coefficients Ni for a number of negative
ions are tabulated in [34].

Adiabatic molecular terms can be obtained from di-
agonalisation of the corresponding matrix in basis of the
ionic Rb+Rb− state and a covalent state belonging to ei-
ther SS or DS configuration. Because of the large inter-
nuclear distances the splittings of terms are exponentially
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small. According to our calculations, they do not exceed
4.2 cm−1 for the avoided crossing of the ionic and SS, and
14.3 cm−1 for the ionic and DS configurations.

For the more complicated case when two excited elec-
trons bind into covalent state as in the case of the PP
configuration, the above model is inapplicable. There ex-
ists, however, a reason why the doubly excited PP config-
uration hardly mixes with the ionic one. Physically it is
related to the fact that the weakly bound electron of the
negative ion can hardly influence the valence electron of
the atom. If one neglects this influence, the wave functions
of the ionic configuration are orthogonal to the wave func-
tions of the PP configuration. The coupling between these
two configurations can be estimated following [7]. The
ionic and covalent states are coupled by the dipole-dipole
interaction (allowed dipole transitions Rb(5P)→Rb(5S)
and Rb(5P)→Rb+ +e). Non-diagonal matrix elements are
calculable in the same manner as for the covalent states.
We estimated the density of the oscillator strength df/dE
for the transition from 5P to continuum, needed for the
calculations, as it was proposed in [35]. The splitting of
terms turned out to be by an order of magnitude smaller
than for the interaction of the ionic and DS configuration,
therefore one can assume that the ionic and PP configu-
rations practically do not interact.

We have not considered so far the interaction of co-
valent configurations with the excited ionic configuration
with the negative Rb ion in the quasi-stationary 3P state.
Since we do not know the energy of this state, we were un-
able to localise the corresponding non-adiabatic regions,
neither could we determine if they are present at all. There
exists, however, a consideration why the transitions via
the excited ionic state, with the electronic configuration
of Rb−(3P) nSAnpA, is not expected to be efficient. The
electron in the negative ion is weakly coupled with the
valence electron of the atom. If one neglects this coupling
and represents the wave function of the electron undergo-
ing a transition in form of multiplication of one-electron
functions, then the wave function of the ionic configu-
ration 〈nSA|〈npA| and those of excited covalent config-
urations are practically orthogonal. Therefore transitions
through the excited ionic state are expected to proceed at
relatively low efficiencies.

3 Non-adiabatic transitions and dynamics
of the ET

The molecular terms obtained from diagonalisation of the
Ĥ(Ωσw) matrix (12) allow us to study the dynamics of ET
processes among the 7S, 5D and 5P states, and to calcu-
late the corresponding transition probabilities and cross-
sections. The large number of crossings and avoided cross-
ings of terms at internuclear distances around 30 a.u. (cf.
Figs. 2a–2d) are responsible for the large cross-sections of
ET and quenching at small (thermal) collision energies.
Since the regions of strong interaction are well localised
and there is a rather large number of them, one can de-
velop a relatively simple model in which the non-adiabatic

regions are successively treated with no account for inter-
ference effects.

In the system of adiabatic Ωσw terms the only reason
for transitions among them is the motion of nuclei. If one
neglects the transfer of electronic momentum, which in our
case is of no considerable importance, then the operator of
non-adiabatic coupling in rotating molecule coordinates is
expressed as a sum of radial and tangential components:

i
〈
Ωσw

∣∣∣∣ ∂∂t
∣∣∣∣Ω′σ′w′ 〉 = vR

〈
Ωσw

∣∣∣∣i ∂∂R
∣∣∣∣Ω′σ′w′ 〉+ ω

〈
Ωσw
∣∣ĵ⊥∣∣Ω′σ′w′ 〉,

(13)

where vR is the radial relative velocity of the colliding
atoms, and ω is the angular velocity of the rotation of
internuclear axis. At large internuclear distances, which
correspond to Hund’s case (c) coupling, the selection rules
for the operator (13) are

∆Ω = ±1 , g ↔ g , u↔ u

for perturbations due to the rotation of internuclear axis
(Coriolis interaction VCor), and

∆Ω = 0 , g ↔ g , u↔ u, 0+ ↔ 0+ , 0− ↔ 0−

for perturbations due to the radial motion. These rules
allow us to consider the systems of even and odd terms
independently.

3.1 Perturbations due to the Coriolis interaction

The rotation of the internuclear axis causes transitions
between terms of different symmetries, i.e., between terms
with Ω = 0 and Ω = 1. In the case of thermal collisions
at large internuclear distances the Coriolis interaction is
weak, therefore it is convenient to use perturbation theory.

In the system of Rb2 terms, two types of rotational
coupling are possible. The first type is the so called unlo-
calised coupling, which takes place when in a region of
avoided crossing of two potential curves with equal Ω
the mutual displacement of terms is such that along one
or both asymptotes of the crossing curves there lie al-
most unperturbed terms with Ω′ = Ω ± 1. This is the
case, for instance, in the system of 0+

g − 1g terms (see
Fig. 2a), where the unperturbed 1g term correlating with
the 5D5/2+5S1/2 state lies along the asymptotes of the two
avoided crossing 0+

g terms correlating with 7S1/2+5S1/2.
Similar situations can be found also for some other terms
correlating with other atomic states. Transition probabil-
ity in this case can be calculated using the adiabatic per-
turbation theory:

Pif =
∣∣∣∣ ∫ +∞

−∞
(V̂Cor)if exp

{
i
∫
t

∆Uif (t′)dt′
}

dt
∣∣∣∣2, (14)

where (V̂Cor)if is the matrix element of Coriolis interac-
tion between states i and f , and ∆Uif is the energy differ-
ence of these two states. The matrix elements of Coriolis
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interaction in Ωσw basis are of the form [26]:〈
Ωσw
∣∣V̂Cor

∣∣Ω′σw 〉 =

λ+(J)δΩ+1,Ω′〈Ωσw|ĵ⊥|Ω′σw 〉+ λ−(J)δΩ−1,Ω′〈Ωσw|ĵ⊥|Ω′σw 〉
µR2

·

Here, µ is the reduced mass, and

λ±(J) =
√

(J ∓Ω)(J ±Ω + 1),

with J being the total angular momentum of the system.
Using the straight trajectory approximation for calcu-

lation of integrals (14) and limiting the impact parameters
to ρ > 20 a.u., we found that unlocalised rotational cou-
pling gives insignificant contribution to the ET. It should
be noted, however, that in the adiabatic case the main
contribution to the transition probability is due to transi-
tions at small internuclear distances in the vicinity of the
turning point, for which the potential curves are not avail-
able. Therefore the final conclusion about the contribution
of this type of coupling cannot be drawn yet.

The second type of Coriolis interaction corresponds to
localised coupling, when the terms of different symmetries
cross. In the system of terms with different Ω, the crossing
points are localised in the region of 27 ≤ R ≤ 33 a.u. The
transition probability at a single pass through the region
of non-adiabaticity [24],

Pif =
2πω2

c

∣∣〈Ωσw∣∣ĵ⊥∣∣Ω′σw 〉∣∣2
|∆Fc|vc

, (15)

is expressed through the parameters of the crossing point
at R = Rc – the angular velocity ωc at the crossing point,
the difference of slopes of the crossing terms,

|∆Fc| =
∣∣∣∣∂U(Ωσw)

∂R
− ∂U(Ω′σw )

∂R

∣∣∣∣
R=Rc

, (16a)

and the radial velocity,

vc = v∞

√
1− ρ2

R2
c

−
UΩσw(Rc)− UΩσw(∞)

Ei
, (16b)

where v∞ is the initial relative velocity of colliding atoms;
Ei and UΩσw(∞) are the kinetic and potential energies in
the initial state, UΩσw(Rc) is the potential energy of both
terms at the crossing point. The parameters in (15, 16)
are of simple physical meaning, and can be unambiguously
determined for the case of crossing adiabatic terms.

In the region of crossing of two terms with different Ω
it is a valid estimate〈

Ωσw
∣∣ĵ⊥∣∣Ω′σw 〉 ∼ 1.

It allows us to determine the maximum possible transi-
tion probability between the terms of different symmetry.
The calculations show that for none of the crossing points
does the transition probability exceed 10−2 upon twice
passing the non-adiabatic region. It leads to ET cross-
sections of an order of 10−16 cm2, i.e., about two orders

of magnitude smaller than those observed in the experi-
ment. Hence, the Coriolis interaction at large internuclear
distances contributes insignificantly to the cross-sections
of ET from 7S to 5D and collisional quenching of the 5D
state.

3.2 Perturbations due to the radial motion

Perturbations due to the radial part of the operator of
non-adiabatic interaction (13) induce transitions within
the system of terms of the same symmetry. These transi-
tions are localised within the non-adiabatic regions around
the avoided crossings. As one can see from the potential
curve diagrams (Figs. 2a–2d), the selection rule ∆Ω = 0
implies that only the terms with Ω = 0 participate in
this type of non-adiabatic interaction at large R. The ex-
change interaction brings together terms correlating with
different atomic states, the strong dipole interaction of
the PP configuration with the SS and DS configurations
binds up the molecular states in a single block, but the
radial motion of the nuclei gives rise to the non-adiabatic
transitions among the terms. Initially the system of collid-
ing atoms develops along one of the terms correlating with
the initial state. Due to the rather large number of avoided
crossings, after the collision the atoms will find themselves
with a certain probability on any of the terms correlating
with the final states. As it will be demonstrated below,
this is the main mechanism of the ET in the system of the
SS, DS, and PP configurations.

We begin the treatment of an ET process from a cer-
tain chosen state of separated atoms, and follow the re-
distribution of population probabilities of molecular states
at successive passing of each of the avoided crossings as
the nuclei approach each other. Since we do not know
the terms at small internuclear distances, we consider re-
flection of probability flows from a hypothetical potential
wall, and follow the development of the system in an out-
ward direction towards the final states. The partial tran-
sition probabilities from a certain initial to a certain final
molecular state are then used to calculate the effective
ET cross-sections. The transition probability between two
molecular states m and n are given by the well-known
Landau-Zener formula:

Pmn(Rk, Ei, ρ) = exp
(
− 2πε2

k

vRk |∆Fk|

)
, (17)

where Rk is the coordinate of the centre of the kth avoided
crossing of the two adiabatic terms, εk = |∆U(Rk)| –
the interaction matrix element between the two states,
|∆Fk| – the difference of slopes of diabatic terms:

|∆Fk| =
∣∣∣∣∂Um∂R − ∂Un

∂R

∣∣∣∣
R=Rk

. (18)

The radial velocity vk at R = Rk can be determined ac-
cording to (16b), replacing the crossing point Rc with the
crossing point of diabatic terms Rk and taking the com-
mon energy of diabatic terms at their crossing point in-
stead of UΩσw(Rc).
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Table 3. Landau-Zener parameters of avoided crossing be-
tween terms m and n with Ω = 0. The term numbers corre-
spond to the labels in Figures 2a–2d. The values in the last
column give the influence of the avoided crossings m/n on the
cross-section.
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The parameters entering equations (17, 18) can be un-
ambiguously determined only for the two-level case, when
it is possible to rationally define the diabatic states. For
the multichannel case the diabatic states cannot be well
defined for all values of R, which leads to uncertainties
in the values of the parameters. Therefore we applied a
numerical procedure to determine the parameters directly
from the term diagrams. We chose the coordinate Rk of
the centre of the non-adiabatic region equal to the inter-
nuclear distance at which the splitting between adiabatic
molecular terms is minimal, and the interaction matrix
element εk equal to a half of this splitting. The values of
|∆Fk| were determined from the diabatic states obtained
by a numerical procedure of diabatisation of the adiabatic
states in the vicinity of avoided crossings. The values of
the non-adiabatic parameters, as determined in the above
way [36], are listed in Table 3. An alternative method to

determine the Landau-Zener parameters from the adia-
batic molecular terms proposed in [37] gives close values.

Most of the avoided crossings are well separated from
each other. Hence, the application of the Landau-Zener
model is fully justified. However, in two cases in the 0+

g

term system, and in one in 0−g , the non-adiabatic regions
are situated in an immediate proximity to each other, so
that practically simultaneous coupling of three adiabatic
states takes place. Although the use of the Landau-Zener
model is not quite correct in such a case, the discrepancies
that can arise in calculations of probabilities of indepen-
dent transitions are practically compensated by integra-
tion over a large number of trajectories with different im-
pact parameters and initial energies. The latter statement
was verified by comparing the probabilities, obtained by
successive application of Landau-Zener model, with the
ones obtained from a numerical solution of a system of
differential equations for the three-state-coupling case in
the system of 0−g terms at R ∼ 30 a.u.

To calculate the effective cross-sections, we used the
procedure proposed in [19]. We assumed that initially (at
R = ∞) only one molecular state is populated (with a
unity probability), while all the other states are not. In the
course of time, the system develops towards smaller R and
passes successively through all the non-adiabatic regions.
At each of them redistribution of populations of molecular
states takes place. Let the populations of adiabatic states
m and n before passing the kth non-adiabatic region of the
same symmetry p be Wm(t) and Wn(t). Then, after pass-
ing the strong coupling region the respective populations
for a given trajectory (Ei, ρ) become

W̃m = Wm[1− Pmn(Rk, Ei, ρ)] +WnPmn(Rk, Ei, ρ),

(19a)

W̃n = Wn[1− Pmn(Rk, Ei, ρ)] +WmPmn(Rk, Ei, ρ),
(19b)

where Pmn(Rk, Ei, ρ) is given by equation (17). The equa-
tion system (19) has to be solved successively for each
avoided crossing that is passed in the course of collision,
with the initial conditions Wi(ti) = 1 and Wn(ti) = 0
(here, Wi(ti) is the initial population of the initial molec-
ular state, and Wn(ti) are the initial populations of all the
other states).

At small internuclear distances we consider reflection
of the population flows from a potential wall, after which
the system develops in the outward direction. Let W (i)

n be
the population of the nth state before the reflection. After
the reflection this population becomes

W (r)
n = W (i)

n (1− κn), (20)

where κn is the absorption coefficient on the wall for the
state n. Since we do not know the behaviour of terms
at small internuclear distances, we assumed that incident
flows are completely reflected, i.e., κn = 0, which ensures
implementation of conservation of a total flow

∑
nWn = 1

for all R. Variation of the value of κn allows one to exclude
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definite channels and to investigate their partial contribu-
tions to the ET. We used this variation also to investigate
the possible contribution of processes at small R, e.g., in-
fluence of the turning points. Although the non-adiabatic
coupling in turning points can be strong, the localisation
of these points at small R leads to small contribution to
the cross-section. Moreover, after the reflection the region
of non-adiabatic coupling at large R is passed again and
it leads to redistribution which is weakly dependent on
the population distribution after the reflection from the
turning points. The calculations showed that a nearly fi-
nal population distribution is established already after a
single passage through the non-adiabatic region at large
R. The above considerations allow us to assume that the
region of small R is not significantly contributing to the
cross-section.

After the reflection, one has to consider development
of the system in the outward direction, solving the equa-
tion system (19) for the reflected population flows, which
provides the final populations of the molecular states
W

(f)
n (tf ). The partial effective cross-sections for decay of

the system through channel n are then obtained by inte-
gration over all the possible trajectories:

σpn(i, Ei) = 2π
√
Ef,n
Ei

∫ ρmax

0

ρW (f)
n (i, t→∞)dρ, (21)

where i denotes the entrance channel, and Ef,n is the final
kinetic energy. The maximal impact parameter is limited
by two conditions:

(a) during the collision the radial velocity vR > 0 at the
crossing, i.e., the radical in equation (16b) should al-
ways be real;

(b) for a given initial kinetic energy Ei the system should
classically overcome the centrifugal barrier in the en-
trance channel, i.e.,

Ei ≥ Ueff,i(Rb) = E(Ai) +E(B∗i ) + Ui(Rb) +
Eiρ

2

R2
b

,

dUeff,i

dR

∣∣∣∣
R=Rb

= 0,

where E(Ai) + E(B∗i ) is the total initial excitation
energy at infinite internuclear separation, and Rb is
the internuclear distance corresponding to the maxi-
mum point of the centrifugal barrier in the entrance
channel.

We chose ρmax as the smallest of the two limiting val-
ues, given by the conditions (a) and (b).

To obtain cross-sections comparable with the experi-
mental ones, equation (21) should be averaged over the
collision velocity distribution, which is Maxwellian in case
of vapour cell experiments:

σpn(i, T ) =
∫ ∞
Emin

σpn(i, Ei) exp
(
− Ei
T

)
1
T 2
EidEi. (22)

Here, Emin is the difference of electronic energies in the
final and initial states, and it should be set equal to zero

for exoenergetic processes. The effective cross-section for
a certain ET process is then obtained by summing the
partial cross-sections (22) over all initial states i and sym-
metries p, and all states n correlating with the chosen final
atomic configuration:

σ(T ) =
∑
i

∑
p

∑
n

gpi σ
p
n(i, T ),

where gpi is the statistical weight of state i of symmetry p,
normalised so that

∑
i,p g

p
i = 1. Cross-sections σ(T ) are

to be compared to the effective cross-sections determined
from the experimentally measured rate constants.

4 ET cross-sections

The cross-sections σpn(i, Ei) were calculated in a broad
range of temperatures from 400 to 1200 K for different
symmetries of molecular states and all the possible scat-
tering channels within each symmetry. The results are dis-
played in Tables 4–7. Each table gives partial effective
cross-sections for different Ωσw symmetries for transitions
from an initial state to a number of final states. The cross-
sections are given for two different temperatures, which
makes possible approximations for intermediate tempera-
ture values. The total effective ET cross-sections are sum-
marised in Table 8 for T = 500 K together with the avail-
able experimental data.

4.1 Rb(5D) + Rb(5S) collisions

We shall illustrate the use of data from Tables 4–7 on
the example of quenching of the 5D state in collisions
with ground state Rb atoms. The 5D state is split in
two fine structure components with j = 5/2 and 3/2.
According to Table 2, 24 molecular states (including the
doubly degenerate states with Ω 6= 0) correlate with the
5D5/2+5S1/2 states, and 16 – with 5S1/2+5D3/2. If one
assumes that the 5D state j-components are populated
according to their statistical weights (which is reasonable
under vapour cell conditions), then for j = 5/2 the prob-
ability that the colliding atoms will find themselves in the
0+
g state is (1/24)gj=5/2. Similarly, for collisions of ground

state atoms with the atoms in the 5D3/2 state this prob-
ability is (1/16)gj=3/2. If the system develops in the 0+

g

state correlating with the 5D5/2+5S1/2 initial configura-
tion, the probabilities are the largest for transitions to the
0+
g states correlating with the doubly excited 5P3/2+5P3/2

and 5P3/2+5P1/2 states of separated atoms. Transitions to
the other states are considerably less efficient. In the case
of the 0+

g term correlating with the 5D3/2+5S1/2 state
the situation is analogous. The effective quenching cross-
section of the 5D state through the 0+

g terms can be then
calculated by summing over all the sates n and k which
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Table 4. Partial effective cross-sections (cm−2) for the 0+
g symmetry for transitions from an initial state to a final state. The

numbering of rows and columns correspond to the labels of terms in Figure 2a.
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Table 5. Partial effective cross-sections (cm−2) for the 0−g
symmetry for transitions from an initial state to a final state.
The numbering of rows and columns correspond to the labels
of terms in Figure 2b.
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Table 6. Partial effective cross-sections (cm−2) for the 0+
u sym-

metry for transitions from an initial state to a final state. The
numbering of rows and columns correspond to the labels of
terms in Figure 2c.
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do not correlate with the 5Dj+5S1/2 states:

σ0+
g (T ) = g

0+
g

j=5/2gj=5/2

∑
n

σ
0+
g
n (T )

+ g
0+
g

j=3/2gj=3/2

∑
k

σ
0+
g

k (T ).

Inserting here

g
0+
g

j=5/2 = 1/24, gj=5/2 = 3/5,

g
0+
g

j=3/2 = 1/16, gj=3/2 = 2/5,

and the corresponding σ
0+
g
n (T ) values from Table 4, we

obtain σ0+
g (500 K) = 2.6× 10−15 cm2. In a similar way

contributions due to transitions within systems of terms
of other symmetries can be obtained from Tables 5–7.

The main contribution to the quenching of the 5D state
is due to transitions induced by radial motion among the
terms with zero projection of the total angular momentum
onto internuclear axis. These transitions lead to the cross-
section

σ5D
q (500 K) ≈ σ0+

g + σ0+
u + σ0−g + σ0−u

= 2.6× 10−15 + 1.6× 10−15 + 2.3× 10−15 + 1.5× 10−15

= 8× 10−15 cm2,

which is close to the experimental value σ5D,exp
q = (2 ±

1) × 10−14 cm2 [21]. The 5D state is quenched mainly
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Table 7. Partial effective cross-sections (cm−2) for the 0−u symmetry for transitions from an initial state to a final state. The
numbering of rows and columns correspond to the labels of terms in Figure 2d.
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in the reverse energy pooling processes

Rb(5D) + Rb(5S)→ Rb(5P3/2) + Rb(5P3/2), (23a)

Rb(5D) + Rb(5S)→ Rb(5P3/2) + Rb(5P1/2), (23b)

Rb(5D) + Rb(5S)→ Rb(5P1/2) + Rb(5P1/2). (23c)

The total effective cross-section for the process (23a)
is σ5D→5P3/2+5P3/2 = 2.3 × 10−15 cm2, and it pro-
ceeds mainly through the 0+

g and 0−u terms with ap-
proximately the same efficiency. For the process (23b)
σ5D→5P3/2+5P1/2 = 5.2×10−15 cm2, a half of which is due
to transitions within the 0−g term system, and the rest
within the 0+

g and 0+
u , 0−u terms. The process (23c) is rel-

atively inefficient, with a cross-section σ5D→5P1/2+5P1/2 =
3.6× 10−16 cm2.

4.2 Rb(7S) + Rb(5S) collisions

In collisions of atoms in the 7S state with ground state
atoms there can take place ET to the 5D state in the
process (1). The total effective cross-section for this ET
process, as obtained by summing contributions of all the
possible channels, is σ7S→5D (500 K) = 7 × 10−15 cm2,
which is in a very good agreement with the value (8±4)×
10−15 cm2 measured in the experiment [21].

Besides the process (1), also a reverse energy pooling
is possible, which leads to population of the resonance
states:

Rb(7S) + Rb(5S)→ Rb(5P3/2) + Rb(5P3/2). (24a)

Rb(7S) + Rb(5S)→ Rb(5P3/2) + Rb(5P1/2). (24b)

Rb(7S) + Rb(5S)→ Rb(5P1/2) + Rb(5P1/2). (24c)

The most efficient here is the population of resonance
states with j = j′ = 3/2 in transitions within the 0+

g

Table 8. Theoretical and experimental cross-sections for col-
lisional ET processes in rubidium vapour.
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term system induced by the radial motion. The total cross-
section for this process at T = 500 K is σ7S→5P3/2+5P3/2 =
5.5× 10−15 cm2.

Transfer to the states with j = 3/2 and j′ =
1/2 is also considerable. It proceeds at a cross-section
σ7S→5P3/2+5P1/2 (500 K) = 1.5 × 10−15 cm2. In this case
the main contribution is due to the transitions within the
0+
u term system. The dipole-dipole interaction couples the

0+
u term of the 7S+5S configuration with the 0+

u term
correlating with 5P3/2+5P1/2. In the same time, the 0+

u

term correlating with the 5D+5S states practically does
not interact with the upper 0+

u term.

Population of the states with j = j′ = 1/2 in the
process (24c) is considerably less efficient, and its cross-
section does not exceed σ7S→5P1/2+5P1/2 (500 K) = 1 ×
10−18 cm−2. The total 7S state quenching cross-section
due to processes (1) and (24a–24c) is σ7S

q (500 K) = 1.4×
10−14 cm2.
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4.3 5D state quenching through capture

The above described calculations are based on the assump-
tion that the energy transfer is caused by essentially the
non-adiabatic processes at large internuclear distances.
We notice, however, that the experimental 5D quench-
ing cross-section is about two times the calculated value
(see Sect. 4.1). It indicates that there may exist inelastic
processes at small internuclear distances, which lead to
additional losses of population.

A possibility to estimate the maximum possible
quenching cross-section through the capture cross-section
is discussed in [38]. One can interpret the quenching cross-
section as a sum of capture cross-sections on each of the
attractive adiabatic terms correlating with the 5D+5S
states. The capture cross-section is defined as

σcapt = πρ2
c , (25)

where the critical impact parameter ρc at which capture
occurs can be determined from the equation system:

U(R) +Ei
ρ2

c

R2
= Ei, (26a)

dU
dR
− 2Ei

ρ2
c

R3
= 0. (26b)

Knowing adiabatic molecular terms at large internuclear
distances, one can apply numerical methods to calculate
ρc from (26) as a function of Ei. The Ei dependent cap-
ture cross-section (25) should then be averaged over the
collision velocity distribution to obtain 〈σcapt(T )〉. The
quenching cross-section can be expressed through the lat-
ter value as

σ5D,max
q =

ga
gi

gf
ga + gf

〈σcapt(T )〉, (27)

where ga is the statistical weight of the attractive terms
correlating with the 5D+5S states; gi – statistical weight
of all the terms correlating with these states; gf – sta-
tistical weight of all the final molecular states to which
transitions from the 5D state are possible. The first factor
on the right hand side of equation (27) gives the proba-
bility to enter an attractive term from the 5D+5S state,
but the second denotes the transition probability to all
the final states.

Numerical calculations according to (26, 27) give for
the maximum 5D quenching cross-section σ5D,max

q = 3.7×
10−14 cm2, which is almost two times larger than the ex-
perimental value (2 ± 1) × 10−14 cm2 [21]. A close value
is obtained when the molecular terms are approximated
by the U(R) = −C/R6 dependence (see Sect. 2.2). In this
case,

〈σcapt(T )〉 = 5.4
(

C

kBT

)1/3

.

Calculating the van der Waals constant according to for-
mulae in Section 2.2 for polarisation interaction, we obtain
σ5D,max
q = 2.8× 10−14 cm2.

5 Discussion and conclusions

The results of the present work allow us to conclude that
the main mechanism leading to specific ET processes oc-
curring at excitation of the 7S and 5D states are the
non-adiabatic transitions at internuclear distances around
30 a.u. within the systems of terms of the same symmetry,
induced by the radial motion of colliding atoms. The rota-
tion of internuclear axis gives insignificant contribution to
the ET in the case of localised coupling. The reason is the
slow rotation of the internuclear axis at large internuclear
distances, i.e., weak Coriolis interaction.

The contribution of the ionic Rb+ + Rb− configu-
ration to the considered ET processes is negligible. The
avoided-crossings of ionic and covalent states are situated
at too large internuclear distances to provide remarkable
coupling among the states. The influence of the ionic state
is rather obstructive – it slightly redistributes the initial
population flows over a large number of molecular states,
decreasing somewhat the efficiencies of the ET processes.
This effect becomes important for slow collisions, e.g., col-
lisions of trapped atoms. The influence of the ionic state
weakens with increasing temperature because of the de-
crease in non-adiabatic transition probabilities.

We should mention one more fact related to the calcu-
lations of terms. Since the terms were calculated using a
limited basis set of atomic states, the choice of this set may
significantly influence the layout of terms. In our case it
was enough to use the basis of three atomic configurations
– SS, DS, and PP. Inclusion of the closest FS configuration
practically did not change the layout of terms at large in-
ternuclear distances, since the exchange interaction dom-
inating within the FS configuration is not strong enough
to draw together terms of the FS and DS configurations
at R > 25 a.u. Moreover, the SS and FS configurations
interact very weakly, so that the SS configuration remains
almost unperturbed.

The SS configuration is very important when the
Rb(5D) + Rb(5S) → Rb(5P) + Rb(5P) process or the
inverse to it energy pooling is concerned. The Rb2 terms
calculated in [6] in a similar manner as here but not in-
cluding the SS configuration change considerably as this
configuration is included. It explains the large difference
between the results of present work and those of [6]. For
instance, a number of new avoided crossings appear in
the 0+

g term system, which are not present in the calcu-
lations of [6]. The PP configuration plays a decisive role
in the considered excitation transfer processes. Since in
a number of cases the initial and final configurations are
not directly coupled with each other (as in the case of
ET from the 7S to 5D state), disregard of their coupling
with the intermediate PP configuration would lead to neg-
ligible efficiencies of the corresponding ET processes (ET
due to the Coriolis interaction and through the interme-
diate ion pair state). However, the PP configuration does
not directly participate in the ET process (1). It only in-
troduces a strong dipole coupling between the terms cor-
relating with the SS and DS configurations, thus opening
efficient channels for population of the 5D state. The latter
assertion follows directly from our calculations: excluding
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successively different scattering channels (i.e., setting the
absorption coefficient in Eq. (20) κn = 1) we found that
molecular states of the PP configuration practically do not
contribute to the population of the 5D state. Note also,
that in the system of 0+

u terms there is only one term cor-
relating with the PP configuration, therefore dipole cou-
pling between the SS and DS configurations is here by an
order of magnitude weaker than in case of the 0+

g terms,
and the partial cross-section is correspondingly smaller.
In the same time, transitions within the 0+

u term system
ensure efficient population of the 5P3/2+5P1/2 states in
process (23b).

The 5D and 7S states are efficiently quenched through
the reverse energy pooling processes (23, 24), preferen-
tially to the 5P3/2+5P3/2 and 5P3/2+5P1/2 doubly ex-
cited states. The most decisive here are the topology of
molecular terms and the strengths of couplings among
them rather than the energy defects of particular pro-
cesses. It explains, for instance, why the cross-section for
the process (23a), which has an energy defect of only
68 cm−1, is more than two times smaller than the cross-
section for the process (23b), the energy defect of which
is as large as 306 cm−1. It should be noted, however,
that there exists an optimum coupling strength that gives
the maximum transition probability. Too strong couplings
lead to too large splitting of terms, and as a result the sys-
tem develops adiabatically.

The dynamics of the 5D quenching is characterised by
an almost homogeneous distribution of partial processes
over the different 0σw term systems (see Sect. 4.1). The con-
tributions to the effective cross-section are approximately
the same for terms of all 0σw symmetries. Such a statistical
nature of quenching processes justifies approximation of
quenching by the averaged capture cross-section.

We should remark that in our case the cross-sections
depend more strongly on the internuclear distance at
which the non-adiabatic regions are located than on other
parameters of the avoided crossings. The more avoided
crossings are present in the system of terms of a given
symmetry, the less pronounced is the significance of each
particular crossing on the cross-section and the closer is
the nature of the process to statistical. This is illustrated
in the last column of Table 3, on the example of process
5D3/2 + 5S1/2 →5P3/2 + 5P1/2.

We find a very good agreement between our calcu-
lations and the experimental results of [21] for the pro-
cess (1) (see Tab. 8). This experimental value is rather
reliable, since it is determined from the measurements of
relative fluorescence intensities not affected by the radia-
tion trapping. The latter leads to large uncertainties in the
determination of absolute concentrations of excited atoms
and thus constitutes a serious problem in experimental
studies involving resonance atoms as either collision part-
ners or end products. For the reverse energy pooling (pro-
cesses (23, 24)) cross-sections no experimental counter-
parts exist. Recalculation of the cross-sections from the
direct energy pooling data of [6,15] using the detailed bal-
ancing principle is inappropriate since we have to do with
a multichannel case, when the initial and final channels

interact with other near lying states. The probability of
each population transfer depends thus on the particular
sequences of non-adiabatic interactions, and detailed bal-
ancing under such conditions is not valid. We therefore
consider the direct energy pooling separately and the re-
sults will be reported elsewhere.

In conclusion, we have calculated cross-sections for
inelastic processes occurring at excitation of 7S and 5D
states of Rb. The asymptotic approach used in this work
gives a very good agreement with the experimental results
for the ET process (1). The doubly excited 5P+5P config-
uration acts here as a sort of carrier of the dipole-dipole
interaction, although this configuration itself does not di-
rectly participate in the process. The theoretical quench-
ing cross-section for the 5D state turned out to be about
two times smaller than the experimental one, indicating
that there might be other inelastic processes at small inter-
nuclear distances adding to the collisional depletion of the
5D state. The upper limit of the quenching cross-section
can be estimated in a simple way using the averaged cap-
ture cross-section, still exact quantum chemical term cal-
culations are necessary to draw conclusions about possible
contribution of the processes at small R.
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